Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(1): e0059823, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38047751

RESUMO

Shiga toxin-producing Escherichia coli infections are difficult to treat due to the risk of antibiotic-induced stress upregulating the production of toxins, medical treatment is consequently limited to supportive care to prevent the development of hemolytic uremic syndrome (HUS). Here, we introduce a potentially therapeutic humanized mouse monoclonal antibody (Hu-mAb 2-5) targeting Stx2a, the most common Shiga toxin subtype identified from outbreaks. We demonstrate that Hu-mAb 2-5 has low immunogenicity in healthy adults ex vivo and high neutralizing efficacy in vivo, protecting mice from mortality and HUS-related tissue damage.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Humanos , Adulto , Animais , Camundongos , Toxina Shiga/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Toxina Shiga II , Anticorpos Monoclonais Humanizados/uso terapêutico , Síndrome Hemolítico-Urêmica/tratamento farmacológico
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003593

RESUMO

α-Amanitin is one of the primary toxins produced by the poisonous mushroom genus, Amanita. Because it is odorless and tasteless, it is an important cause of death from the consumption of misidentified mushrooms. To study the thermal stability of α-amanitin, novel cell-based assays were developed to measure the toxin's activity, based on the inhibition of RNA polymerase II by α-amanitin. First, an MTT-formazan cell viability assay was used to measure the biological activity of α-amanitin through the inhibition of cellular activity. This method can detect 10 µg/mL of α-amanitin in a time-dependent manner. Second, a more sensitive quantitative PCR approach was developed to examine its inhibition of viral replication. The new RT-qPCR assay enabled the detection of 100 ng/mL. At this level, α-amanitin still significantly reduced adenovirus transcription. Third, a simpler GFP expression-based assay was developed with an equal sensitivity to the RT-qPCR assay. With this assay, aqueous α-amanitin heated at 90 °C for 16 h or treated in the microwave for 3 min retained its biological activity when tested in HEK293 cells, but a slight reduction was observed when tested in Vero cells. Beyond detecting the activity of α-amanitin, the new method has a potential application for detecting the activity of other toxins that are RNA polymerase inhibitors.


Assuntos
Alfa-Amanitina , RNA Polimerase II , Animais , Chlorocebus aethiops , Humanos , Alfa-Amanitina/farmacologia , Células Vero , Células HEK293 , Amanita
3.
Toxins (Basel) ; 15(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368700

RESUMO

In this study, sixteen unique staphylococcal enterotoxin B (SEB)-reactive nanobodies (nbs), including ten monovalent and six bivalent nbs, were developed. All characterized nbs were highly specific for SEB and did not cross-react with other staphylococcal enterotoxins (SE). Several formats of highly sensitive enzyme-linked immunosorbent assays (ELISAs) were established using SEB nbs and a polyclonal antibody (pAb). The lowest limit of detection (LOD) reached 50 pg/mL in PBS. When applied to an ELISA to detect SEB-spiked milk (a commonly contaminated foodstuff), a LOD as low as 190 pg/mL was obtained. The sensitivity of ELISA was found to increase concurrently with the valency of nbs used in the assay. In addition, a wide range of thermal tolerance was observed among the sixteen nbs, with a subset of nbs, SEB-5, SEB-9, and SEB-62, retaining activity even after exposure to 95 °C for 10 min, whereas the conventional monoclonal and polyclonal antibodies exhibited heat-labile properties. Several nbs demonstrated a long shelf-life, with one nb (SEB-9) retaining 93% of its activity after two weeks of storage at room temperature. In addition to their usage in toxin detection, eleven out of fifteen nbs were capable of neutralizing SEB's super-antigenic activity, demonstrated by their inhibition on IL-2 expression in an ex vivo human PBMC assay. Compared to monoclonal and polyclonal antibodies, the nbs are relatively small, thermally stable, and easy to produce, making them useful in applications for sensitive, specific, and cost-effective detection and management of SEB contamination in food products.


Assuntos
Anticorpos de Domínio Único , Humanos , Leucócitos Mononucleares , Enterotoxinas/análise , Ensaio de Imunoadsorção Enzimática , Anticorpos
4.
J Dairy Sci ; 106(10): 6723-6730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210361

RESUMO

Streptococcus pyogenes is an important human pathogen, commonly spread by airborne droplets but also by ingestion of contaminated food. Apart from causing infection, this pathogen produces 13 distinct types of streptococcal pyrogenic exotoxins (SPE). The current method for detection cannot distinguish between the biologically active form of SPE that has been reported to cause foodborne outbreaks and the inactivated toxin that poses no health risk. To measure the biological activity of SPE type C (SPE-C), one such toxin that was linked to foodborne outbreaks associated with milk and milk products, we developed a cell-based assay that can discern between biologically active and inactive SPE-C. To the best of our knowledge, this is the first showing that SPE-C activates T-cells expressing Vß8. With this finding, we used a T-cell line natively expressing Vß8 that was genetically engineered to also express the luciferase reporter gene under the regulation of nuclear factor of activated T-cells response element in combination with a B-cell line to present the recombinant SPE-C (rSPE-C) toxin via major histocompatibility complex (MHC) class II to the Vß8 T-cell receptor (TCR) in an assay to detect and to discern between biologically active and inactive rSPE-C. By using this system, we demonstrated that SPE-C induced significant IL-2 secretion after 72 h and visible light emission after only 5 h, doubling by 24 h. We utilize this finding to assess the specificity of the assay and the effect of pasteurization on SPE-C activity. We observed no cross-reactivity with SPE-B and significant loss of SPE-C biological activity in spiked phosphate-buffered saline while SPE-C spiked into milk is heat stable. Once SPE-C has formed, it is infeasible to eliminate it from milk by thermal treatment.


Assuntos
Proteínas de Bactérias , Exotoxinas , Humanos , Exotoxinas/genética , Streptococcus pyogenes/genética , Antígenos de Histocompatibilidade Classe II , Receptores de Antígenos de Linfócitos T
5.
Antibiotics (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326857

RESUMO

Probiotic bacteria help maintain microbiome homeostasis and promote gut health. Maintaining the competitive advantage of the probiotics over pathogenic bacteria is a challenge, as they are part of the gut microbiome that is continuously exposed to digestive and nutritional changes and various stressors. Witch hazel that is rich in hamamelitannin (WH, whISOBAXTM) is an inhibitor of growth and virulence of pathogenic bacteria. To test for its effect on probiotic bacteria, WH was tested on the growth and biofilm formation of a commercially available probiotic Lactobacillus plantarum PS128. As these bacteria are aerotolerant, the experiments were carried out aerobically and in nutritionally inadequate/poor (nutrient broth) or adequate/rich (MRS broth) conditions. Interestingly, despite its negative effect on the growth and biofilm formation of pathogenic bacteria such as Staphylococcus epidermidis, WH promotes the growth of the probiotic bacteria in a nutritionally inadequate environment while maintaining their growth under a nutritionally rich environment. In the absence of WH, no significant biofilm is formed on the surfaces tested (polystyrene and alginate), but in the presence of WH, biofilm formation was significantly enhanced. These results indicate that WH may thus be used to enhance the growth and survival of probiotics.

6.
Methods Mol Biol ; 2393: 237-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837183

RESUMO

Staphylococcus aureus is a major bacterial cause of clinical infections and foodborne illnesses.Through the synthesis of a group of Staphylococcal enterotoxins (SEs), gastroenteritis occurs and the SEs function as superantigens to massively activate T cells. The ability to rapidly detect and quantify SEs is imperative in order to learn the causes of staphylococcal outbreaks and to stop similar outbreaks in the future. Also, the ability to discern active toxin is essential for development of food treatment and processing methods. Here, we discuss the various methodologies for detection and analysis of SEs.


Assuntos
Infecções Estafilocócicas , Enterotoxinas , Humanos , Intoxicação Alimentar Estafilocócica , Staphylococcus aureus , Superantígenos
7.
Toxins (Basel) ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922450

RESUMO

Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current methods for the detection of biologically active SEB rely upon its ability to cause emesis when administered to live kittens or monkeys. This technique suffers from poor reproducibility and low sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data presented here show the first successful implementation of an alternative method to live animal testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals, we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji B-cells. We presented this SEB-MHC class II complex to specific Vß5.3 regions of the human T-cell line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation than the splenocyte cells containing the highest concentration of APC cells.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes Imunológicos de Citotoxicidade/métodos , Enterotoxinas/farmacologia , Leucemia de Células T , Animais , Linhagem Celular Tumoral , Enterotoxinas/análise , Antígenos de Histocompatibilidade Classe II/efeitos dos fármacos , Humanos , Limite de Detecção , Sensibilidade e Especificidade
8.
PLoS One ; 15(9): e0238153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32998160

RESUMO

Bacillus cereus is a foodborne pathogen causing emesis and diarrhea in those affected. It is assumed that the non-hemolytic enterotoxin (Nhe) plays a key role in B. cereus induced diarrhea. The ability to trace Nhe activity is important for food safety. While assays such as PCR and ELISA exist to detect Nhe, those methods cannot differentiate between active and inactive forms of Nhe. The existing rabbit ileal loop bioassay used to detect Nhe activity is ethically disfavored because it uses live experimental animals. Here we present a custom built low-cost CCD based luminometer and applied it in conjunction with a cell-based assay using Vero cells transduced to express the luciferase enzyme. The activity of Nhe was measured as its ability to inhibit synthesis of luciferase as quantified by reduction of light emission by the luciferase reaction. Emitted light intensity was observed to be inversely proportional to Nhe concentration over a range of 7 ng/ml to 125 ng/ml, with a limit of detection of 7 ng/ml Nhe.


Assuntos
Enterotoxinas/metabolismo , Medições Luminescentes , Animais , Biocatálise , Chlorocebus aethiops , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Células Vero
9.
Toxins (Basel) ; 12(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075080

RESUMO

Abrin is a highly potent and naturally occurring toxin produced in the seeds of Abrus precatorius (Rosary Pea) and is of concern as a potential bioterrorism weapon. There are many rapid and specific assay methods to detect this toxic plant protein, but few are based on detection of toxin activity, critical to discern biologically active toxin that disables ribosomes and thereby inhibits protein synthesis, producing cytotoxic effects in multiple organ systems, from degraded or inactivated toxin which is not a threat. A simple and low-cost CCD detector system was evaluated with colorimetric and fluorometric cell-based assays for abrin activity; in the first instance measuring the abrin suppression of mitochondrial dehydrogenase in Vero cells by the MTT-formazan method and in the second instance measuring the abrin suppression of green fluorescent protein (GFP) expression in transduced Vero and HeLa cells. The limit of detection using the colorimetric assay was 10 pg/mL which was comparable to the fluorometric assay using HeLa cells. However, with GFP transduced Vero cells a hundred-fold improvement in sensitivity was achieved. Results were comparable to those using a more expensive commercial plate reader. Thermal inactivation of abrin was studied in PBS and in milk using the GFP-Vero cell assay. Inactivation at 100 °C for 5 min in both media was complete only at the lowest concentration studied (0.1 ng/mL) while treatment at 63 °C for 30 min was effective in PBS but not milk.


Assuntos
Abrina/isolamento & purificação , Abrus/química , Colorimetria/métodos , Plantas Tóxicas/química , Sementes/química , Toxinas Biológicas/isolamento & purificação , Abrina/toxicidade , Animais , Biocatálise , Chlorocebus aethiops , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Interpretação de Imagem Assistida por Computador , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Oxirredutases/metabolismo , Sensibilidade e Especificidade , Toxinas Biológicas/toxicidade , Células Vero
10.
Toxins (Basel) ; 11(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295829

RESUMO

Staphylococcal food poisoning is a result of ingestion of Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus. Staphylococcal enterotoxin type A (SEA) is the predominant toxin produced by S. aureus strains isolated from food-poisoning outbreak cases. For public safety, assays to detect and quantify SEA ideally respond only to the active form of the toxin and this usually means employing disfavored live animal testing which suffers also from poor reproducibility and sensitivity. We developed a cell-based assay for SEA quantification in which biologically-active SEA is presented by Raji B-cells to CCRF-CEM T-cells resulting in internalization of Vß9 within 2 hours with dose dependency over a 6-log range of SEA concentrations. This bioassay can discern biologically active SEA from heat-inactivated SEA and is specific to SEA with no cross reactivity to the homologically-similar SED or SEE. In this study, we terminated any ongoing biochemical reactions in accessory cells while retaining the morphology of the antigenic sites by using paraformaldehyde fixation and challenged the current model for mechanism of action of the SEA superantigen. We demonstrated for the first time that although fixed, dead accessory cells, having no metabolic functions to process the SEA superantigen into short peptide fragments for display on their cell surface, can instead present intact SEA to induce T-cell activation which leads to cytokine production. However, the level of cytokine secretion induced by intact SEA was statistically significantly lower than with viable accessory cells, which have the ability to internalize and process the SEA superantigen.


Assuntos
Enterotoxinas/análise , Fragmentos de Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linhagem Celular , Citocinas , Enterotoxinas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Intoxicação Alimentar Estafilocócica/prevenção & controle
11.
Toxins (Basel) ; 10(12)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558281

RESUMO

Staphylococcal enterotoxins (SEs) are a food safety concern. Existing methods for biologically active SE detection rely on the emetic response in live kittens or monkeys. This method suffers from low sensitivity, poor reproducibility, and causes ethical concerns regarding the use of experimental animals. The Lautenberg Chemical Safety Act encourages the development and adoption of alternatives to testing on animals for chemical toxicity methodologies. In this study, we utilized the superantigenic effect of SE type A (SEA) and used an ex vivo bioassay as an alternative to live animal testing. We found that interleukin-2 (IL-2) secreted by splenocyte can be utilized for quantifiable detection of SEA in food products. To avoid food matrix interference and attenuation of signal, we separated SEA from spiked food products by employing immunomagnetic beads that were coated with an anti-SEA antibody. This ex vivo method has achieved the detection of 1 ng mL-1 of SEA, which is 107 times more sensitive than the existing live animal testing methods. However, this ex vivo bioassay requires sacrificing of mice. To overcome this limitation, we established a cell based in vitro assay using CCRF-CEM, a human CD4⁺ T-cell line, for the quantitative detection of SEA. Incubation of SEA with CCRF-CEM human T-cells and Raji cells led to quantifiable and dose dependent secretion of IL-2. This novel cell-based assay is highly specific to biologically active SEA, compared with the related SE toxin subtypes B, D, and E or heat inactivated SEA, which produce no secretion of IL-2. This is the first demonstration of an alternative assay that completely eliminates the use of animals for quantitative detection of active SEA.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Enterotoxinas/análise , Enterotoxinas/farmacologia , Contaminação de Alimentos/análise , Interleucina-2/metabolismo , Alternativas aos Testes com Animais , Animais , Bioensaio , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Fabaceae/química , Humanos , Leite/química , Produtos Avícolas/análise , Carne Vermelha/análise
12.
J Food Prot ; 80(11): 1857-1862, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990820

RESUMO

Staphylococcus aureus is a significant worldwide source of clinical infections and foodborne illnesses; it acts through the synthesis of a group of enterotoxins (SEs) that cause gastroenteritis and also function as superantigens that activate T cells, resulting in massive cytokine production, yielding life-threatening toxicity. It is important that methods for detection and quantification of these toxins respond to their activity and not just the presence of the toxin molecule, which may be deactivated. Traditionally, live animals have been used to test for emesis following administration of the toxin-containing sample. Here, we present results studying cell-based alternatives for the assay of active staphylococcal enterotoxin type E (SEE), a toxin subtype identified in foodborne outbreaks in the United States, the United Kingdom, and France. We found that interleukin 2 production by T cells can be used as a specific biological marker for the quantitative detection of SEE as compared with subtypes SEA and SEB. Our assay shows a dose-response relationship between IL-2 secretion by Jurkat T-cell line and SEE concentration as low as 1 pg/mL.

13.
J Food Sci ; 82(3): 718-723, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135403

RESUMO

Food poisoning by Staphylococcus aureus is a result of ingestion of Staphylococcal enterotoxins (SEs) produced by this bacterium and is a major source of foodborne illness. Staphylococcal enterotoxin D (SED) is one of the predominant enterotoxins recovered in Staphylococcal food poisoning incidences, including a recent outbreak in Guam affecting 300 children. Current immunology methods for SED detection cannot distinguish between the biologically active form of the toxin, which poses a threat, from the inactive form, which poses no threat. In vivo bioassays that measure emetic activity in kitten and monkeys have been used, but these methods rely upon expensive procedures using live animals and raising ethical concerns. A rapid (5 h) quantitative bioluminescence assay, using a genetically engineered T-cell Jurkat cell line expressing luciferase under regulation of nuclear factor of activated T cells response elements, in combination with the lymphoblastoid B-cell line Raji for antigen presentation, was developed. In this assay, the detection limit of biologically active SED is 100 ng/mL, which is 10 times more sensitive than the splenocyte proliferation assay, and 105 times more sensitive than monkey or kitten bioassay. Pasteurization or repeated freeze-thaw cycles had no effect on SED activity, but reduction in SED activity was shown with heat treatment at 100°C for 5 min. It was also shown that milk exhibits a protective effect on SED. This bioluminescence assay may also be used to rapidly evaluate antibodies to SED for potential therapeutic application as a measurement of neutralizing biological effects of SED.


Assuntos
Enterotoxinas/análise , Microbiologia de Alimentos/métodos , Imunoensaio/métodos , Leite/microbiologia , Intoxicação Alimentar Estafilocócica/microbiologia , Staphylococcus aureus/classificação , Bem-Estar do Animal , Animais , Anticorpos/metabolismo , Antígenos , Gatos , Criança , Surtos de Doenças , Guam/epidemiologia , Haplorrinos , Humanos , Células Jurkat , Limite de Detecção , Luciferases/metabolismo , Luminescência , Linfócitos , Intoxicação Alimentar Estafilocócica/epidemiologia , Staphylococcus aureus/metabolismo
14.
Toxins (Basel) ; 8(5)2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187474

RESUMO

Staphylococcus aureus is a major bacterial cause of clinical infections and foodborne illnesses through its production of a group of enterotoxins (SEs) which cause gastroenteritis and also function as superantigens to massively activate T cells. In the present study, we tested Staphylococcal enterotoxin type E (SEE), which was detected in 17 of the 38 suspected staphylococcal food poisoning incidents in a British study and was the causative agent in outbreaks in France, UK and USA. The current method for detection of enterotoxin activity is an in vivo monkey or kitten bioassay; however, this expensive procedure has low sensitivity and poor reproducibility, requires many animals, is impractical to test on a large number of samples, and raises ethical concerns with regard to the use of experimental animals. The purpose of this study is to develop rapid sensitive and quantitative bioassays for detection of active SEE. We apply a genetically engineered T cell-line expressing the luciferase reporter gene under the regulation of nuclear factor of activated T-cells response element (NFAT-RE), combined with a Raji B-cell line that presents the SEE-MHC (major histocompatibility complex) class II to the engineered T cell line. Exposure of the above mixed culture to SEE induces differential expression of the luciferase gene and bioluminescence is read out in a dose dependent manner over a 6-log range. The limit of detection of biologically active SEE is 1 fg/mL which is 108 times more sensitive than the monkey and kitten bioassay.


Assuntos
Enterotoxinas/análise , Animais , Bioensaio , Linhagem Celular Tumoral , Feminino , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Genes Reporter , Temperatura Alta , Humanos , Luciferases/genética , Camundongos Endogâmicos C57BL , Leite , Pasteurização , Baço/citologia
15.
Biosens Bioelectron ; 80: 405-410, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874107

RESUMO

Aflatoxin B1 (AFB1) producing fungi contaminate food and feed and are a major health concern. To minimize the sources and incidence of AFB1 illness there is a need to develop affordable, sensitive mobile devices for detection of active AFB1. In the present study we used a low cost fluorescence detector and describe two quantitative assays for detection of detoxified and active AFB1 demonstrating that AFB1 concentration can be measured as intensity of fluorescence. When the assay plate containing increasing concentrations of AFB1 is illuminated with a 366 nm ultraviolet lamp, AFB1 molecules absorb photons and emit blue light with peak wavelength of 432 nm. The fluorescence intensity increased in dose dependent manner. However, this method cannot distinguish between active AFB1 which poses a threat to health, and the detoxified AFB1 which exhibits no toxicity. To measure the toxin activity, we used a cell based assay that makes quantification more robust and is capable of detecting multiple samples simultaneously. It is an alternative to the qualitative duckling bioassay which is the "gold-standard" assay currently being used for quantitative analysis of active AFB1. AFB1 was incubated with transduced Vero cells expressing the green fluorescence protein (GFP) gene. After excitation with blue light at 475 nm, cells emitted green light with emission peak at 509 nm. The result shows that AFB1 inhibits protein expression in a concentration dependent manner resulting in proportionately less GFP fluorescence in cells exposed to AFB1. The result also indicates strong positive linear relationship with R(2)=0.90 between the low cost CCD camera and a fluorometer, which costs 100 times more than a CCD camera. This new analytical method for measuring active AFB1 is low in cost and combined with in vitro assay, is quantitative. It also does not require the use of animals and may be useful especially for laboratories in regions with limited resources.


Assuntos
Aflatoxina B1/análise , Técnicas Biossensoriais/instrumentação , Microbiologia de Alimentos/instrumentação , Animais , Técnicas Biossensoriais/economia , Chlorocebus aethiops , Fluorometria/economia , Fluorometria/instrumentação , Microbiologia de Alimentos/economia , Proteínas de Fluorescência Verde/análise , Células HEK293 , Humanos , Imagem Óptica/economia , Imagem Óptica/instrumentação , Células Vero
16.
PLoS One ; 10(7): e0132419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26192407

RESUMO

BACKGROUND: Stx2e is a primary virulence factor in STEC strains that cause edema disease in neonatal piglets. Though Stx2a and Stx2e are similar, many antibody-based Stx detection kits are designed to detect Stx2a and do not recognize the Stx2e subtype. METHODS AND FINDINGS: Four monoclonal antibodies against Stx2e were developed and characterized. Two of these mAbs recognize the B subunit of Stx2e, Stx2f, and to a lesser extent, Stx2b, Stx2c, and Stx2d. The other two mAbs recognize the A subunit of Stx2e, and cross-react with all Stx2 subtypes except Stx2f. The most sensitive sandwich ELISA using these mAbs has a limit of detection for Stx2e of 11.8 pg/mL. The ability of the neutralizing antibody Stx2e-2 to block Stx2e-receptor binding in Vero cells was visualized using immunofluorescence. Combinations of these and previously developed mAbs permit ELISA-based differentiation between closely related Stx2a, Stx2c, and Stx2d (using mAbs Stx2-5/2-1, Stx2-5/2e-2, and Stx2e-3/2e-2, respectively). CONCLUSIONS: The sensitive immunoassays developed in this study should augment our capacity to detect Stx2e in porcine environments and biological samples. Moreover, immunoassays that can distinguish between the closely related Stx2a, Stx2c, and Stx2d subtypes can be useful in quickly analyzing Stx subtypes in samples containing more than one strain of STEC.


Assuntos
Anticorpos Monoclonais , Infecções por Escherichia coli/diagnóstico , Toxina Shiga II/metabolismo , Animais , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/metabolismo , Camundongos , Células Vero
17.
Toxins (Basel) ; 7(3): 835-45, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25767986

RESUMO

Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.


Assuntos
Bacillus cereus/química , Enterotoxinas/análise , Contaminação de Alimentos/análise , Extratos Vegetais/química , Animais , Catequina/química , Chlorocebus aethiops , Cimenos , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/microbiologia , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Fórmulas Infantis/microbiologia , Viabilidade Microbiana , Monoterpenos/química , Oryza/microbiologia , Sensibilidade e Especificidade , Leite de Soja , Chá/química , Células Vero
18.
World J Microbiol Biotechnol ; 31(5): 729-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25700743

RESUMO

Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.


Assuntos
Aflatoxinas/antagonistas & inibidores , Aspergillus flavus/crescimento & desenvolvimento , Viabilidade Microbiana , Pichia/química , Pichia/fisiologia , Sorbitol/análise , Trealose/análise , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Controle Biológico de Vetores , Pichia/crescimento & desenvolvimento , Preservação Biológica/métodos , Fatores de Tempo
19.
Biosens Bioelectron ; 68: 705-711, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25677808

RESUMO

To reduce the sources and incidence of food-borne illness there is a need to develop affordable, sensitive devices for detection of active toxins, such as Shiga toxin type 2 (Stx2). Currently the widely used methods for measuring Shiga toxin are immunoassay that cannot distinguish between the active form of the toxin, which poses a threat to life, to the inactive form which can bind to antibodies but show no toxicity. In this work, we determine toxin activity based on Shiga toxin inhibition of green fluorescent protein (GFP) combined with low cost charge-coupled device (CCD) fluorescence detection, which is more clinically relevant than immunoassay. For assay detection, a simple low cost fluorescence detection system was constructed using a CCD camera and light emitting diode (LED) excitation source, to measure GFP expression. The system was evaluated and compared to a commercial fluorometer using photomultiplier detection for detecting active Stx2 in the range 100 ng/mL-0.01 pg/mL. The result shows that there is a negative linear relationship between Stx2 concentrations and luminous intensity of GFP, imaged by the CCD camera (R(2)=0.85) or fluorometer (R(2)=0.86). The low cost (∼$300) CCD camera is capable of detecting Shiga toxin activity at comparable levels as a more expensive (∼$30,000) fluorometer. These results demonstrate the utility and the potential of low cost detectors for toxin activity; this approach may increase the availability of foodborne bacterial toxin diagnostics in regions where there are limited resources and could be readily adapted to the detection of other food-borne toxins.


Assuntos
Técnicas Biossensoriais , Análise de Alimentos , Toxina Shiga II/isolamento & purificação , Proteínas de Fluorescência Verde , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-24847471

RESUMO

Protozoa are known to harbor bacterial pathogens, alter their survival in the environment and make them hypervirulent. Rapid non-culture based detection methods are required to determine the environmental survival and transport of enteric pathogens from point sources such as dairies and feedlots to food crops grown in proximity. Grazing studies were performed on a soil isolate of Tetrahymena fed green fluorescent protein (GFP) expressing Escherichia coli O157:H7 to determine the suitability of the use of such fluorescent prey bacteria to locate and sort bacterivorous protozoa by flow cytometry. In order to overcome autofluorescence of the target organism and to clearly discern Tetrahymena with ingested prey vs. those without, a ratio of prey to host of at least 100:1 was determined to be preferable. Under these conditions, we successfully sorted the two populations using short 5-45 min exposures of the prey and verified the internalization of E. coli O157:H7 cells in protozoa by confocal microscopy. This technique can be easily adopted for environmental monitoring of rates of enteric pathogen destruction vs. protection in protozoa.


Assuntos
Microbiologia Ambiental , Escherichia coli O157 , Citometria de Fluxo , Tetrahymena , Escherichia coli O157/genética , Expressão Gênica , Genes Reporter , Microscopia Confocal , Tetrahymena/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...